Elementary Processes in Plasmas

Elementary Processes in Plasmas are obtained at PLASMI Lab by accurate theoretical methods, accounting for the dependence on the excitation of internal degrees of freedom of atoms and molecules (rovibronic levels) and for the different classes of processes relevant to technological fields, from fusion applications (negative ion sources, divertor region in tokamak), aerospace (re)entry conditions and astrochemistry.

Atom-Molecule and Molecule-Molecule collisions

» atom-molecule collisions:
roto-vibrational energy exchange and dissociation

Elementary Processes_in Plasmas

(v,j) = initial rotational and vibrational quantum numbers
(v’,j’) = final rotational and vibrational quantum numbers

  1. Method: quasiclassical trajectory method (QCT)
  2. In house numerical codes suitable for parallel, distributed (computational grids) and hybrid (MPI+OpenMP) calculations
  3. Typical serial computational time: from 6 months to 20 years Optimized for Fermi Supercomputer at Cineca

results and work in progress

»Aerospace:
N+N2(v,j), O+O2(v,j), N+O2(v,j), O+N2(v,j)
N2+N2, O2+N2 (molecule-molecule, even semiclassical)

»Nuclear fusion (negative ion sources, divertor):
H+H2(v,j), D+D2(v,j)
H++H2(v,j) non-adiabatic, with charge transfer

»Astrochemistry:
He+H2(v,j), He+H2+(v,j), H+HeH+(v,j)

Electron – Molecule Collisions
Dynamics of electron-molecule collisions for resonant and non-resonant elementary processes:

»H2, O2, N2, NO and CO resonant vibrational excitation (RVE)

»H2, O2 dissociative attachment (DEA)

»O2 and N2 resonant dissociation

»H2 non-resonant excitation and dissociation

»O2 and N2 dissociative excitation

»O2 and N2 non-dissociative ionization

»BeH, Cs2 and CH non-resonant electronic excitation

Atom-Molecule Surface
The interaction of atoms and molecules with surfaces can lead to a great variety of physical and chemical processes including scattering, adsorption, atoms recombination and molecule dissociative adsorption.
Molecular Dynamic calculation of surface processes aims are:
Understanding the dynamics pathways underlying atom/molecule-surface interactions
Predicting the catalytic activity as a function of atomic/molecular properties and structural /chemical properties of the solid substrate
Determining an accurate database of collisional coefficients to be used in kinetic modelling of surface chemical processes

In addition it is possible to determine the influence on the reaction dynamics of:
» Surface Polymorph
» Surface Chemical Composition
» Surface Adsorption Site
» Surface Temperature
» Isotope Species

Database
The phys4entry DB, designed and implemented by CNR IMIP Bari and SER&Practices spin-off of the University of Bari, is a database of state-selected dynamical information for elementary processes relevant to the state-to-state kinetic modeling of planetary-atmosphere entry conditions.

State-to-State Kinetics
State-to-state approach, proposed in the 70’s by the plasma chemistry group in Bari and nowadays widely used by the international plasma modeling community, can be considered as the most accurate tool for the investigation of chemical and thermal non-equilibrium under different conditions.
In the state-to-state kinetics, chemical processes are studied determining at the same time the distributions of internal levels of atoms and molecules, also accounting for the self-consistent coupling with the free electron kinetics.

Facilities & Labs

HPC Cluster and Services @ Bari

People

Iole_arminiseIole

Armenise

CNR Researcher

rutiglianom_fotoMaria

Rutigliano

CNR Researcher

mcapitelliMario

Capitelli

Associate Professor

esposito-fabrizioFabrizio

Esposito

CNR Researcher

Viso_UomoMario

Cacciatore

Associate Researcher

rcelibertoRoberto

Celiberto

Associate Professor

alaricchiutaAnnarita

Laricchiuta

CNR Researcher

Publications

  1. V. Laporta, J. Tennyson, R. Celiberto, Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule, Plasma Sources Science and Technology, 25, 06LT02, (2016); doi:10.1088/0963-0252/25/6/06LT02
  2. A. Laricchiuta, R. Celiberto, M. Capitelli, G. Colonna, Calculation of Electron-Scattering Cross Sections Relevant for Hypersonic Plasma Modeling, Plasma Processes and Polymers, (2016); doi: 10.1002/ppap.201600131
  3. R. Celiberto, I. Armenise, M. Cacciatore, M. Capitelli, F. Esposito, P. Gamallo, R. K. Janev, A. Laganà, V. Laporta, A. Laricchiuta, A. Lombardi, M. Rutigliano, R. Sayós, J. Tennyson, J. M. Wadehra, Atomic and molecular data for spacecraft re-entry plasmas, Plasma Sources Science and Technology (Topical Review), 25, 033004, (2016); doi: 10.1088/0963-0252/25/3/033004
  4. R. Celiberto, K. L. Baluja, R. K. Janev, V. Laporta, Electron-impact dissociation cross sections of vibrationally excited He2+ molecular ion, Plasma Physics and Controlled Fusion, 58, 014024, (2016); doi: 10.1088/0741-3335/58/1/014024
  5. V. Laporta, R. Celiberto, J. Tennyson, Dissociative electron attachment and electron-impact resonant dissociation of vibrationally excited O2 molecules, Physical Review A, 91, 012701, (2015); doi: 10.1103/PhysRevA.91.012701
  6. V. Laporta, D. A. Little, R. Celiberto, J. Tennyson, Electron-impact resonant vibrational excitation and dissociation processes involving vibrationally excited N2 molecules, Plasma Sources Science and Technology, 23, 065002, (2014); doi: Doi: 10.1088/0963-0252/23/6/065002
  7. F. Esposito, C.M. Coppola, D. De Fazio, Complementarity between Quantum and Classical Mechanics in Chemical Modeling. The H + HeH + → H 2 + + He Reaction: A Rigourous Test for Reaction Dynamics Methods. The Journal of Physical Chemistry A. 2015;119,:12615−12626.
  8. M. Rutigliano, N. Sanna, A. Palma, Multiple approach to model unpaired spin density effects in H-ZSM5 zeolite with extra-framework O atom: H-abstraction reaction from methane, Computational and Theoretical Chemistry, 1074 (2015) 9-18
  9. I. Armenise, F. Esposito, “N2, O2, NO state-to-state vibrational kinetics in hypersonic boundary layers: The problem of rescaling rate coefficients to uniform vibrational ladders”, Chemical Physics, Vol.446, 2015, pp.30-46, DOI: 10.1016/j.chemphys.2014.11.004
  10. M. Rutigliano, D. Santoro, M. Balat-Pichelin, Hydrogen atom recombination on tungsten at high temperature: Experiment and Molecular Dynamics Simulation, Surface Science 628 (2014), 66-75

Latest News

Scholar-in-Training Award dell'AACR a Marta Cavo

Lecce, 15/01/2020
Marta Cavo, ERC-postdoctoral research fellow at the CNR Institute of Nanotechnology in Lecce (ERC-StG INTERCELLMED No., 759959, PI: Dr. Loretta L. del Mercato), have been selected to receive a Scholar-in-Training Award (USD $625). The Scholarship will support her attendance at the Conference on The Evolving Landscape of Cancer Modeling, organized by the American Association for Cancer Research (AACR), to be held on 2-5 March 2020 in San Diego (California), where she will present the work "Quantifying stroma-tumor cell interactions in three-dimensional cell culture systems". Link to the conference:

I° meeting TecnoMed Puglia

Lecce, 05 dicembre 2019 - Aula Rita Levi Montalcini - CNR NANOTEC Lecce

Si terrà domani, giovedì 05 dicembre, con inizio alle ore 14.00 presso l'aula Rita Levi Montalcini del Cnr Nanotec, il "I° meeting TecnoMed Puglia: Tecnopolo per la medicina di precisione". Il meeting mira a fare il punto sulle attività programmate, sullo stato di avanzamento e sugli highlights.

Puoi scaricare la locandina da qui

Jam session Nanotec... note di scienza su scala nanometrica

Lecce, 27 settembre 2019 - ex monastero degli Olivetani "CAR-T: l'alba di una nuova era"  con: Attilio Guarini (IRCCS Istituto Tumori “Giovanni Paolo II” di Bari)  introduce e modera: Marco Ferrazzoli (Ufficio Stampa CNR Roma) a cura di: Gabriella Zammillo 

Le CAR-T (Chimeric Antigens Receptor Cells-T) sono cellule modificate in laboratorio a partire dai linfociti T. Rappresentano una nuova strategia di cura che sfrutta il sistema immunitario per combattere alcuni tipi di tumore come linfomi aggressivi a grandi cellule e leucemie linfoblastiche acute a cellule B. Il prof Attilio Guarini, ematologo all’Istituto tumori Giovanni Paolo II di Bari, le definisce la “vis sanatrix naturae della antica medicina salernitana”, trattandosi del potenziamento dell’attività citotossica dei linfociti del paziente opportunamente ingegnerizzati per riconoscere e contrastare alcuni tipi di cellule tumorali.

 

Le CAR-T possono quindi essere definite un “farmaco vivente” proprio perché prodotto a partire dalle cellule dello stesso paziente aprendo così ad un nuovo mondo, considerato che i farmaci convenzionali sono prodotti da sostanze chimiche o, in alternativa, sono anticorpi prodotti in laboratorio dai biologi. Un trattamento estremamente complesso e costoso, non sempre applicabile, ma laddove possibile, dai risultati incoraggianti per le aspettative di vita. Lo sviluppo di nuove tecnologie per la produzione di CAR-T è parte integrante delle attività di ricerca condotte dal TecnoMed Puglia, il TecnoPolo per la Medicina di Precisione, coordinato da Giuseppe Gigli direttore del Cnr Nanotec di Lecce, e che nel suo nucleo fondatore vede anche l’IRCCS Istituto Tumori “Giovanni Paolo II” di Bari, il Centro di malattie neurodegenerative e dell’invecchiamento cerebrale dell’Università di Bari con sede presso l’Ospedale " G. Panico" di Tricase e la Regione Puglia.

 

L'evento apre la nuova stagione della rassegna divulgativa "Jam session Nanotec: note di scienza su scala nanometrica", un progetto Cnr Nanotec di Gabriella Zammillo, realizzato in collaborazione con Liberrima.

A condurre e moderare la serata, Marco Ferrazzoli, capo ufficio stampa dal CNR. Puoi scaricare la locandina da qui